

Introduction to GW from compact binary coalescence (CBC)

basic signal morphology & detection methods

Thomas Dent

IGFAE/University of Santiago de Compostela

Nov. 16, 2020

ICERM Workshop: Statistical Methods for the Detection, Classification, and Inference of Relativistic Objects

Plan of lecture

- Very brief introduction to GW
- Emission of GW from compact binaries
- Morphology and parameters of CBC signals

- GW detectors, response & noise
- The detection problem and matched filtering
- Signal geometry / template banks
- Challenges / frontiers (if time)

GW - a very brief introduction

Weak field limit of GR

Minkowski space
$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}, \qquad |h_{\mu\nu}|\ll 1$$

Valid at large distance from sources

- Physical content : Symmetric 2-index tensor Excitations travel @ speed of light Sourced by energy-mom. of 'matter' $\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$
- In vacuo impose 'transverse traceless' condition
 Plane wave solution

2 independent pol. components

$$h_+, h_\times$$

$$h_{ij}^{TT}(t,z) = \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix} \cos(\omega(t-z/c))$$

How to 'see' GW

- Tidal effect on spatially separated test particles
- Can extract energy (imagine a spring connecting particles)
- Measure variations in distance or light travel time

Strain
$$h(t) \sim \frac{\delta L(t)}{L}$$

GW frequency: back-of-envelope

Gravitationally bound system, total mass *M*, size *R* has a maximum *dynamical frequency*

$$R^2 \omega_d^2 \sim \frac{GM}{R}$$
 $\omega_d \sim \sqrt{\frac{GM}{R^3}} \sim (G\rho)^{1/2}$

Sensitive frequency band of ground-based detectors 10 Hz < $f_{\rm GW}\sim\omega_{\rm d}/\pi<{\rm few}\times10^3$ Hz

Only very dense objects emit GW visible by LIGO

- MainSequence stars / planets : $\omega_{\rm d} \sim 10^{-3} 10^{-6} \, {\rm Hz}$
- WD: 0.1 − 10 Hz
- NS: 1000 2000 Hz

• BH: ??
$$(f_{gw})_{ISCO} \simeq 4.4 \text{kHz} \left(\frac{M_{\odot}}{M}\right)$$

GW amplitude : back-of-envelope

'Quadrupole formula' strain at distance r from source $h(r) \sim \frac{1}{r} \frac{G}{c^4} \ddot{Q}$

Q : quadrupole moment

$$Q \sim \int \mathrm{d}^3 x \, x^2 \rho(x) \lesssim M R^2$$

(Maximum) rate of change described by dynamical frequency

$$\ddot{Q} \lesssim \omega_d^2 Q \sim \frac{GM^2}{R}$$

GW amplitude vs. compactness

Order of magnitude bound on GW strain

$$h(r) \lesssim \frac{1}{r} \frac{GGM^2}{c^4} = \left(\frac{GM}{Rc^2}\right) \left(\frac{GM}{rc^2}\right)$$

Scales as M/R (not as ρ)

• Recall
$$R_{\rm S}$$
 = 2 GM/c² : $h(r) \lesssim \left(\frac{R_S}{R}\right) \left(\frac{GM}{rc^2}\right)$

Object cannot be smaller than its own Schwarzschild radius (to avoid collapse into BH!)

- 'Compactness' R_S/R strictly <1

GW are really small!

 Closest known NeutronStars 10² – 10³ pc away (Galaxy ~10⁴ kpc)

Most efficient GW emitters : compact binaries

eg binary NS

$$h(r) \approx 10^{-22} \left(\frac{M}{2.8 M_{\odot}}\right)^{5/3} \left(\frac{0.01 \text{ s}}{P}\right)^{2/3} \left(\frac{100 \text{ Mpc}}{r}\right)$$

Compact binary mergers

- Binaries of NS / BH emit GW due to orbital motion
 - Orbit decays due to GW emission
 - Objects eventually collide / merge
 - Waveform predicted in GR given NS, BH masses/spins

GW emitted in circular orbit

• For emission in direction (θ , ϕ) find GW polarizations

$$h_{+}(t;\theta,\phi) = \frac{1}{r} \frac{4G\mu\omega_s^2 R^2}{c^4} \frac{1 + \cos^2\theta}{2} \cos(2\omega_s t_{\text{ret}} + 2\phi)$$
$$h_{\times}(t;\theta,\phi) = \frac{1}{r} \frac{4G\mu\omega_s^2 R^2}{c^4} \cos\theta \sin(2\omega_s t_{\text{ret}} + 2\phi)$$

- GW frequency $\omega_{gw} = 2\omega_{s}$
- Amplitude grows with ω_s^2
- θ = angle between rotation axis and line of sight = inclination ι

Energy emitted as GW

Power emitted in given direction:

$$\frac{dP}{d\Omega_{|\text{quad}}} = \frac{r^2 c^3}{16\pi G} \langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle$$

- $\langle ... \rangle$ = average over few cycles : $\langle \cos^2 2\omega t \rangle = \frac{1}{2}$
- Result:

$$\frac{dP}{d\Omega} = \frac{2G\mu^2 R^4 \omega_2^6}{\pi c^5} \left[\left(\frac{1 + \cos^2 \iota}{2} \right)^2 + \cos^2 \iota \right]$$

Angular distribution of GW power

'Peanut shaped' emission along rotation axis

Integrate over d Ω : total power

$$P = \frac{dE_{\text{GW}}}{dt} = \frac{32}{5} \frac{G\mu^2}{c^5} R^4 \omega_s^6$$

Kepler's law and chirp mass

• Circular orbit:

$$R = \left(\frac{Gm}{\omega_s^2}\right)^{1/3}$$

• Rewrite h₊ and P via 'chirp mass' $M_c \equiv \mu^{3/5} m^{2/5}$

$$M_c \equiv \mu^{3/5} m^{2/5}$$

$$h_{+} \propto \left(\frac{GM_{c}}{c^{2}}\right)^{5/3} \left(\frac{\pi f_{\rm gw}}{c}\right)^{2/3}$$

$$P \propto \left(\frac{GM_{c}\pi f_{\rm gw}}{c^{3}}\right)^{10/3}$$

$$(f_{gw} = \omega_s/\pi)$$

A binary inspiral chirp

- Highest GW power in last few hundred cycles
- In LIGO frequency band if $m \sim {\rm few} \ {\rm M}_{\odot}$ up to (few×10) ${\rm M}_{\odot}$

Binary inspiral orbit

Chirp in time domain

 Chirping frequency f_{gw}(t) from loss of orbital energy via GW

$$f_{\rm gw} = 130 \, {\rm Hz} \left(\frac{1.2 \, M_{\odot}}{M_c} \right)^{5/8} \left(\frac{1 \, {\rm s}}{ au} \right)^{3/8}$$

$$h_{+}(t) = A(\tau) \frac{1 + \cos \iota}{2} \cos(\Phi), \qquad \Phi(t) = \int dt' \omega_{\text{gw}}(t')$$

$$A(\tau) \propto \tau^{-1/4}, \qquad \Phi = -2\left(\frac{5GM_c}{c^3}\right)^{-5/8} \tau^{5/8} + \Phi_0$$

Φ(t): 'gravitational wave phase'

Chirp in frequency domain

Fourier transform h₊(t) (not entirely straightforward!)

$$\tilde{h}_+(f) \propto e^{i\Psi_+(f)} \frac{1}{f^{7/6}}$$

GW phase in frequency domain

$$\Psi_{+}(f) = 2\pi f(t_c + r/c) - \Phi_0 - \frac{\pi}{4} + \frac{3}{4} \left(\frac{GM_c}{c^3} \cdot 8\pi f \right)^{-5/3} + \cdots$$

Higher terms in f ∝ v/c : 'Post-Newtonian' theory

- Beyond lowest order in $|h_{\mu
 u}|$ and v/c
- Dependence on mass ratio & component spins

Frequency dependence

Frequency domain chirp

$$|h(f)| \sim f^{-7/6}$$

as f increases PN corrections get bigger

 $(5,6)M_{\odot}$ BBH inspirals vs. detector noises "Blind hardware injection"

http://www.ligo.org/science/GW100916/

Waveforms with merger/ringdown

- Highly nonlinear & difficult problem
- Combine numerical ('NR') and analytic techniques

Abadie et al. arXiv:1102.3781 Used in search for binaries with black hole(s) : $m_1 + m_2 > 4 M_{\odot}$

Visualizing an NR solution

Signal in frequency domain

GR has no intrinsic scale

⇒ can freely rescale solutions

As M increases:

- |h(f)| at fixed distance grows
- maximum GW frequency decreases

Signal vs. noise in freq domain

 $|h(f)|^2 \times f$ for optimally aligned & located signals at 30 Mpc

Laser interferometric detection

 Michelson interferometer: end mirrors free to move along arms

Differential length change $\delta(L_x - L_y) = h(t) \cdot L$

- ⇒ time of flight difference
- ⇒ relative phase difference@ beam splitter
- ⇒ transmitted intensity

End Test Mass
Fabry-Perot Cavity
Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot Cavity

Fabry-Perot C

variation @ PhotoDiode

Getting down to <1e-23

Enhance the signal

- Long arms
- High power ultrastable laser
- Power recycling (factor ~35)
- Resonant arm cavities (factor ~300)
- Signal recycling

Getting down to <1e-23

Reduce seismic noise

- Active seismic isolation
- Quadruple pendulum suspension
- ~10 orders of magnitude suppression of displacement noise above 10Hz

Reduce quantum noise

Inject non-classical 'squeezed' states of photon field

Precision Interferometry = Understanding Measurement Noises

Fundamental Noises

- I. Displacement Noises
- $\rightarrow \Delta L(f)$
 - Seismic noise
 - Radiation Pressure
 - Thermal noise
 - Suspensions
 - Optics

II. Sensing Noises

- $\rightarrow \Delta t_{photon}(f)$
 - Shot Noise
 - Residual Gas

Technical Noises

→ Hundreds of them...

Advanced LIGO Design Noise Budget

GW signal seen at a detector

3 Cartesian frames:

- source frame x y z
- radiation frame x'' y'' z''
- detector frame x' y' z'

Strain at the detector:

$$h(t) = F_+ h_+(t) + F_\times h_\times(t)$$

 F_+ and F_\times : depend on sky position (θ, φ) , rotation angle ψ around line of sight

Binary signal seen in 1 detector

• Combine $F_+\cos(\Phi(t))$, $F_\times\sin(\Phi(t))$ components into a single sinusoid

$$h(t) = rac{A(t)}{\mathcal{D}_{\!\! ext{eff}}} \cos \left(arPhi(t) - heta
ight)$$

$$A(t) = -\frac{2G\mu}{c^4} \left[\pi GMf(t) \right]^{\frac{2}{3}}$$

• Effective distance (nb : $\mathcal{D}_{eff} \ge r$)

$$\mathcal{D}_{\text{eff}} = \frac{r}{\sqrt{F_{+}^{2}(1 + \cos^{2}\iota)^{2}/4 + F_{\times}^{2}\cos^{2}\iota}}$$

Phase shift

$$\tan \theta = \frac{F_{\times} 2 \cos \iota}{F_{+} (1 + \cos^{2} \iota)}$$

Detector response to inspiral signal

take ι = 0i.e. 'face on'binary

The detection problem

The statistical problem

- CBC signals arrive at the detector all the time!
- The great majority are 'too weak to detect'
 - Sources are not within sensitive volume of detector
 - Cannot extract useful (astrophysical) info
- Detector output is signal plus noise:

$$s(t) = h(t) + n(t)$$

Detection means:
 The data favour nonzero signal relative to no signal

⇒ tell the difference between

$$s(t) = h(t) + n(t)$$
 vs. $s(t) = 0 + n(t)$

Signal and noise hypotheses

- Hypothesis H_1 : $s(t) = s_1(t) = h(t) + n(t)$ $h(t) \neq 0$
- Hypothesis $\mathbf{H_0}$: $\mathbf{s(t)} = \mathbf{s_0(t)} = \mathbf{n(t)}$
- Bayes' rule:

$$\frac{P(\mathbf{H}_1|d)}{P(\mathbf{H}_0|d)} = \frac{P(d|\mathbf{H}_1)}{P(d|\mathbf{H}_0)} \times \frac{P_i(\mathbf{H}_1)}{P_i(\mathbf{H}_0)}$$
 d, "data" \rightarrow s(t)

Posterior Odds Ratio

Likelihood Ratio ('Bayes Factor')

Prior Odds Ratio

 Prior odds depends on astrophysical coalescence rate (mergers /volume /time) – highly uncertain!

Neyman-Pearson optimal statistic

- A(d) is optimal if it maximizes detection probability at a fixed value of false alarm probability
- Can be proved that likelihood ratio

$$\Lambda(d) = \Lambda_{\text{opt}} = rac{P(d|\mathbf{H}_1)}{P(d|\mathbf{H}_0)}$$

is an optimal statistic for a known signal h(t)

• Any monotonic increasing function of $\Lambda_{\rm opt}$ gives same ranking of possible data d – also optimal

Statistics of (Gaussian) noise

To calculate likelihood, need statistics of noise P(n(t))

- Simplest assumption: stationary process, describe in the frequency (Fourier) domain n(f)
- Autocorrelation function $R(\tau) = \langle n(t+\tau) n(t) \rangle$
- F.T. \Rightarrow **PowerSpectralDensity** $S_n(f)$

$$\langle n^*(f)n(f')\rangle = \delta(f - f')\frac{1}{2}S_n(f)$$

Noise at different frequencies not correlated

• Quantity linear in GW strain : amplitude spectral density 'ASD' $\sqrt{S_n(f)}$ units : ${\tt strain}/{\rm Hz}^{1/2}$

Likelihood for noise vs. signal

• Noise likelihood : under H_0 , n(f) = s(f)

$$P(s(f)|\mathbf{H}_0) = \mathcal{N} \exp \left\{ -\frac{1}{2} \int_{-\infty}^{\infty} df \, \frac{|s(f)|^2}{\frac{1}{2} S_n(f)} \right\}$$

• Signal likelihood : under $\mathbf{H_1}$, n(f) = s(f) - h(f)

$$P(s(f)|\mathbf{H}_1) = \mathcal{N} \exp \left\{ -\frac{1}{2} \int_{-\infty}^{\infty} df \, \frac{|s(f) - h(f)|^2}{\frac{1}{2} S_n(f)} \right\}$$

Scalar products and likelihood ratio

Define scalar product of data streams a(t), b(t)

$$\langle a|b\rangle = \operatorname{Re} \int_{-\infty}^{\infty} df \, \frac{a^*(f)b(f)}{\frac{1}{2}S_n(f)}$$

- Usual properties: $\langle a|b\rangle=\langle b|a\rangle$, $\langle a|a\rangle\geq 0$ etc.
- Rewrite likelihoods :

$$P(d|\mathbf{H}_0) = \mathcal{N}e^{-\frac{1}{2}\langle s|s\rangle}$$

$$P(d|\mathbf{H}_1) = \mathcal{N}e^{-\frac{1}{2}\langle s-h|s-h\rangle} = \mathcal{N}e^{-\frac{1}{2}\langle s|s\rangle + \langle s|h\rangle - \frac{1}{2}\langle h|h\rangle}$$

• Likelihood ratio $\Lambda_{
m opt}=rac{P(d|{f H}_1)}{P(d|{f H}_0)}=e^{\langle s|h
angle-rac{1}{2}\langle h|h
angle}$

Optimal matched filter

- \\h\\ is constant for a fixed signal, ex is monotonic
- Therefore we can also use \(s | h \) as our statistic Known as 'matched filter'
 Linear in the detector output s

$$\langle s|h\rangle = \operatorname{Re} \int_{-\infty}^{\infty} df \, K^*(f)s(f), \quad K(f) = \frac{h(f)}{\frac{1}{2}S_n(f)}$$

- Expected value of $\langle s|h \rangle$ under H_0 is = 0
- Expected value of $\langle s|h \rangle$ under H_1 is = $\langle h|h \rangle$
- Variance of $\langle s|h \rangle$ is $\sigma^2 = \langle h|h \rangle$

Signal-to-noise ratio (SNR)

- Rescale the matched filter : $ho = \frac{\langle s|h \rangle}{\sqrt{\langle h|h \rangle}}$
- Variance $\sigma^2(\rho) = 1$
- Mean $\overline{\rho}_{:0} = 0$ (noise)

$$\overline{\rho}_{;1} = \sqrt{\langle h|h\rangle}$$
 (signal)

- $\bar{\rho}$ is "expected" / "optimal SNR" of signal h(t)
- Distribution of ρ :

$$p(\rho|\bar{\rho}) d\rho = \frac{1}{\sqrt{2\pi}} e^{-(\rho-\bar{\rho})^2/2} d\rho$$

Matched filter output statistics

$$p(\rho|\bar{\rho}) d\rho = \frac{1}{\sqrt{2\pi}} e^{-(\rho-\bar{\rho})^2/2} d\rho$$

Expected value in presence of signal *h*

$$\bar{
ho} = \sqrt{\langle h|h \rangle}$$

Horizon distance

• Farthest distance D_h where a merger could produce a given expected SNR $\overline{\rho}$, e.g. = 8

$$h(f) = \frac{1 \operatorname{Mpc}}{D_{\text{eff}}} \mathcal{A}_{1 \operatorname{Mpc}} f^{-7/6} \exp(i \Psi(f; \mathcal{M}, M))$$

$$\left(\frac{S}{N}\right)^2 = 4 \int_0^\infty \mathrm{d}f \, \frac{|\tilde{h}(f)|^2}{S_n(f)}$$

D_h depends on binary masses& detector noise spectrum

Signal parameters seen in h(t)

- Signal h(t) is not unique (not a 'simple hypothesis')
- Described by parameters " θ "
 - Amplitude $\propto A_{\rm 1Mpc}/D_{\rm eff}$ Effective distance $D_{\rm eff}$ encodes physical distance D and geometry relative to the detector
 - Coalescence phase ϕ_0
 - Coalescence time t₀
 - Masses m₁, m₂, component spins, ...
- Theoretically correct treatment; evaluate likelihood $p(d|\mathbf{H_1}(\theta))$ for all θ , marginalize (integrate) over θ

CBC signal parameters I

• Amplitude: Easy, the matched filter $ho = \frac{\langle s|h\rangle}{\sqrt{\langle h|h\rangle}}$ doesn't care about amplitude of h

$$\rho = \frac{\langle s|h\rangle}{\sqrt{\langle h|h\rangle}}$$

- The value of ρ is a measurement of expected SNR $\overline{\rho}$
- Proportional to $A_{1\text{Mpc}}/D_{\text{eff}}$ for a signal

CBC signal parameters II

Coalescence phase: Easy, use 'cos' and 'sin' filters

$$\Psi(f) = -2\phi_0 + \Psi'(f)$$

$$\langle s|f^{-7/6}e^{i\Psi(f)}\rangle = \cos 2\phi_0 \langle s|f^{-7/6}e^{i\Psi'(f)}\rangle + \sin 2\phi_0 \langle s|f^{-7/6}(-i)e^{i\Psi'(f)}\rangle$$
$$= \cos 2\phi_0 \cdot x + \sin 2\phi_0 \cdot y$$

- Can show that $|z|=|x+iy|=\sqrt{x^2+y^2}$ is an optimal statistic if the phase ϕ_0 is not known.
- z is a complex matched filter:

$$z = \frac{2A}{D_{\text{eff}}} \int_{f_{\min}}^{f_{\max}} df \, \frac{\tilde{s}(f) f^{-7/6} e^{-i\Psi'(f)}}{\frac{1}{2} S_n(f)}$$

CBC signal parameters III

- Coalescence time: Easy.
 - Rewrite $\Psi'(t_0) = \Psi'(t_0 = 0) \cdot e^{2\pi i f t_0}$
 - Get a matched filter time series :

$$z(t_0) = \frac{2A}{D_{\text{eff}}} \int_{f_{\min}}^{f_{\max}} df \, \frac{s(f)f^{-7/6}e^{-i\Psi'(f;t_0=0)}}{\frac{1}{2}S_n(f)} e^{-2\pi i f t_0}$$

It's just a Fourier transform! Can use FFTs etc.

Modelled binary merger search

- GW150914 'easily' visible in (minimally filtered) detector output
- ♦ Most events in 01/02 were not
- eg GW151226 detected *only* by matched filtering

Signal geometry and template banks

How many filters do we need?

- Different masses $\theta = \{m_1, m_2\}$ require different filters
- If there is a signal with parameters θ and we use filter parameters $\theta' \neq \theta$ we do not have an optimal search
 - Given a fixed SNR ρ^* for detection, the probability that the signal exceeds ρ^* will be smaller for a mismatched template
 - How much 'lack of match' is acceptable?
- Define 'match' M ≤ 1

$$M = \overline{\rho}/\overline{\rho}_{\text{opt}}$$

= (SNR for template θ)/(SNR for optimal template θ)

Loss in search sensitive volume

- Assume binary mergers are uniform in space
- Volume of space where signals can be detected with $\overline{\rho} > \rho^*$ is $\propto D_{max}(\rho^*)^3$
- Optimal template:

$$ar
ho_{
m opt} \propto rac{
m A}{D_{
m max}}$$

Non-optimal template:

$$ar{
ho} \propto M rac{\mathrm{A}}{D_{\mathrm{max}}}, \quad M \leq 1$$

• Thus $D_{max}(\rho^*) \propto M/\rho^*$, sensitive volume $\propto (M/\rho^*)^3$

(Mis)match of templates

- Use normalized templates $h(\theta, t_0, \phi_0)$: $\langle h | h \rangle = 1$
- Match M for small mass differences :

$$M(\theta, \Delta\theta) = \max_{t_0, \phi_0} \langle h(\theta) | h(\theta + \delta\theta) \rangle$$

max over t_0 , ϕ_0 ensures differences due to $m_{1,2}$ only

• Expand near local maximum at $\Delta \theta = 0$:

$$M(\theta, \Delta\theta) = 1 + \frac{1}{2} \frac{\partial^2 M}{\partial \theta_i \partial \theta_j} \Delta \theta_i \Delta \theta_j + \mathcal{O}(\Delta \theta_i^3)$$

Mismatch metric

• Local deviation from M=1 defines a **metric** over θ_i

$$1 - M = "ds^2" = g_{ij}\Delta\theta_i\Delta\theta_j, \quad g_{ij}(\theta) = -\frac{1}{2}\frac{\partial^2 M}{\partial\theta_i\partial\theta_j}$$

- Calculate $M(\theta, \Delta\theta)$ explicitly \rightarrow find g_{ij}
- Sometimes may find coordinates where g_{ij} is (nearly) constant
- Use a regular lattice of templates
 - Ensures that no point in space is further than some maximum distance from a template
 - ds²_{max}: "maximal mismatch"

Template bank placement

- Hexagonal bank is more efficient at covering space
- "Chirp time" coordinates τ_0 , τ_3 : functions of $m_{1,2}$

'Geometric' template bank

- Minimal match 0.97 (maximal mismatch 0.03)
 - ~10% maximum possible loss of sensitive volume
- Component masses $1 < m_{1,2}/\rm{M}_{\odot} < 24$
- Max mtotal = 25 M_{\odot}
- Order 10,000 templates
- Computationally feasible to search

Effects of spin on BBH signals

 last stages of inspiral/merger last for more/fewer cycles, end at higher/lower frequency

Stochastic / aligned spin banks

- With nonzero spins s_1 , s_2 parameter space becomes multidimensional (eg 4d for 'aligned' spin)
- Metric far from ~constant for IMR templates
- General method : 'stochastic' placement
 - Pseudorandom choice of test points
 - Reject if 'too close' to already accepted point
 - e.g. LIGO 01 bank

Challenges

- Signals may be complicated / uncertain / unpredictable
 - many free parameters
 - GR is hard theory to calculate

Noise may be complicated

EMRI orbit (S. Drasco)

- non-Gaussian i.e. containing loud non-GW events 'glitches'
- Noise may be unpredictable
 - Some types of 'glitch' not (so far) diagnosed or removed

A spinning precessing waveform

Real detector noise is not Gaussian

B. Abbott et al., Rep. Prog. Phys. 72 076901 (2009)

Noise distribution is strongly non-ideal at mid/low frequencies

Matched filter in non-Gaussian noise

Non-Gaussian noise transients

 SNR above ~8 is not expected to occur 'ever' in Gaussian roise

Detector output

Matched filter ρ

Simulated signal in real noise

'Non-Gaussian noise' questions

- What is it?
 - could be almost anything ..
 - NEED TO LOOK AT THE DATA
- What causes it?
 - Instrumental problems / environmental influence on detectors
 - In some cases: we do not know!
- What to do about it?
 - SNR no longer 'optimal' even for single template
 - Need to identify & use more information
 - from detectors and in strain data